ROLINE Industrial SNMP 10x GbE Switch, 2x SFP webbasiert verwaltet, 250W Firmware Rev1.0 und höher

21.13.1131

Benutzerhandbuch

Inhaltsverzeichnis

1. Einleitung	3
1.1 Funktionen	4
1.2 Produktpanels	5
1.3 LED-Anzeigen	6
1.4 Spezifikationen	6
2. Installation	9
2.1 Auspacken	9
2.2 Sicherheitshinweise	9
2.3 DIN-Schienenmontage	10
2.4 Schalttafelmontage	12
2.5 Anlegen von Strom	14
2.6 Alarmrelaisausgang	15
2.7 Reset-Taste	16
2.8 Herstellen von UTP-Verbindungen	17
2.9 Herstellen einer Glasfaserverbindung	18
2.10 Herstellen von PoE-PSE-Verbindungen	20
2.11 LED-Anzeige	22
2.12 Konsolenverbindung herstellen	23
3. Den Switch verwalten	24
3.1 IP-Adresse und Passwort	24
3.2 Konfigurieren von IP-Adresse und Passwort über Konsole und Telnet	24
3.3 Konfigurieren der IP-Adresse über die Webschnittstelle	25
3.4 Referenzhandbücher für Web-, Konsolen- und Telnet-Verwaltung	27
3.5 Konfiguration für SNMP-Management	28
3.6 SNMP-MIBs	29
3.6.1 SNMP-Traps	30
4. Redundante Ringanwendungen	31
4.1 Auto-Multi-Ring-Technologie	31
4.2 Redundante Ringanwendungen mit RSTP-Protokoll nach Industriestandard	32

1. Einleitung

- Acht 10/100/1000 Mbit/s Gigabit-Kupfer-Ports mit PoE-Funktion
- Zwei Dual-Speed-SFP-Steckplätze für 100Base-FX 1000Base-X
- Ein RS-232-Konsolenanschluss

1.1 Funktionen

- Acht 10/100/1000 Mbit/s RJ-45- und zwei Dual-Speed-SFP-Steckplätze
- Alle Kupfer-Ports unterstützen Auto-Negotiation und Auto-MDI/MDI-X-Erkennung.
- Alle Kupfer-Ports sind mit der 802.3bt-konformen PoE-PSE-Funktion ausgestattet
- Zwei SFP-Steckplätze unterstützen Dual-Speed für 100BASE-FX- und 1000BASE-X-SFP-Transceiver.
- Full-Wire-Speed-Forwarding
- Unterstützt 802.3x-Flusskontrolle für Vollduplex und Gegendruck für Halbduplex
- Unterstützt SFP mit Digital Diagnostic Monitoring (DDM)
- Bietet PoE-PSE-Redundanzfunktion
- Bietet eine OPA-Funktion (Fiber Optical Power Alarm).
- Bietet die Funktion "Automatische Laserabschaltung" (ALS).
- Management:
 - HTTP/HTTPS/SSHv2/CLI Telnet/CLI-Konsole/SNMP v1/v2c/v3/RMON
 - DHCP/DHCPv6-Client, DHCP-Relay, DNS-Client, NTPv4
 - IPv6-Unterstützung, System-Syslog, Konfigurations-Download/-Upload, Software-Upload
- Sicherheit:
 - NAS, 802.1X, MAC-basierte/Web-/CLI-Authentifizierung
 - IP-MAC-Bindung, TACACS+, IP-Source-Guard
- Schicht 2:
 - QoS, 802.1Q/MAC-basiert/Protokollbasiert/Privat/IP-Subnetz-VLAN, Port-Isolierung
 - Sturmkontrolle für UC/MC/BC-Pakete, statische MAC-Konfiguration
 - IGMP v2/v3-Snooping, MLD v1/v2-Snooping, DHCP-Snooping
 - Multiple Spanning Tree MSTP. RSTP, STP
- Auto Multi-Ring (AMR)-Technologie:
 - Schnelle Failover-Reaktionszeit
 - Automatische Wiederherstellung, wenn der Fehler behoben ist
 - Unterstützt bis zu fünf redundante Ringe
 - Funktioniert mit RSTP-Netzwerk
- Spezifische SNMP-Implementierung:
 - Private MIB zum Lesen des DDM-Status
 - Private MIB für den Remote-Start des Geräts über SNMP
 - Private MIB für TFTP-Firmware-Update über SNMP
 - Private MIB zum Konfigurieren der OPA-Funktion
 - Private MIB zum Konfigurieren der ALS-Funktion
 - OPA-Alarmfallen

1.2 Produktpanels

Die folgende Abbildung zeigt die Vorder- und Rückseite des Switches:

DC IN terminal block connector

1.3 LED-Anzeigen

LED	Funktion
PWR	Energiestatus
Mgt.	Verwaltungsstatus
Port 1~ 8 SPEED-LEDs	Geschwindigkeit und PoE-Status
Port 1~ 8 LINK-LEDs	Link- und Aktivitätsstatus
SFP 9, 10 LEDs	Geschwindigkeit, Verbindungs- und Aktivitätsstatus des SFP-Ports

1.4 Spezifikationen

<u>10/100/1000 Kupfer-Ports (Port 1 ~ Port 8)</u>

Einhaltung	IEEE 802.3 10Base-T, IEEE 802.3u 100Base-TX, IEEE 802.3u 1000Base-T
Anschlüsse	Geschirmte RJ-45-Buchsen
Pinbelegungen	Automatische MDI/MDI-X-Erkennung
Aufbau	Autonegotiation oder Softwaresteuerung
Übertragungsrate	10 Mbit/s, 100 Mbit/s, 1000 Mbit/s
Duplex-Unterstützung	Voll-/Halbduplex
Netzwerkkabel	Cat.5 UTP

Dual-Speed-SFP-Steckplätze (Port 9, Port 10)

Standards	IEEE 802.3u 100Base-FX
	IEEE 802.3z 1000Base-SX/LX
Anschlüsse	SFP für optionale Glasfaser-Transceiver vom Typ SFP
Aufbau	Automatisch 1000 Mbit/s, Vollduplex
	Erzwungene 100 Mbit/s, Vollduplex
Übertragungsrate	100 Mbit/s und 1000 Mbit/s
Netzwerkkabel	MMF 50/125µm 62.5/125µm, SMF 9/125µm
Augensicherheit	IEC 825-konform

<u>Konsolenport</u>

Schnittstelle	RS-232, DTE-Typ, galvanische Isolierung
Verbinder	Geschirmter RJ-45

Schalterfunktionen

Tabelle der MAC-Adress	sen 8.000 Einträge
Weiterleiten & Filtern	Non-blocking, full wire speed
Switching Technik	Store and forward

Maximale Paketlänge	9,6 KB
IP-Multicast-Gruppen	8192 unterstützt
Flow Control	IEEE 802.3x-Pause-Frame-Basis für Vollduplex-Betrieb
	Backpressure für Halbduplexbetrieb

Power over Ethernet PSE-Funktion

 $PSE-Ports \qquad \qquad Port \ 1 \sim Port \ 8$

Standard IEEE 802.3af, IEEE 802.3at und IEEE 802.3bt

Unterstützung für PD-Klassen PSE-Port-Ausgang vs. PD-Eingang

Konform	IE	EE-Standa	rd.	DC-Leistung	PSE-Ausgangsleistung	Kabelstrompaa	PD Verfügbare
PD-Klassen	802.3af	802.3at	802.3bt	min. *1	max.*2	re	Leistung min.*3
Klasse 1	\checkmark	\checkmark	\checkmark	45V	5,3W	2	3,84 W
Klasse 2	\checkmark	\checkmark	\checkmark	45V	8,5 W	2	6,49 W
Klasse 3	\checkmark	\checkmark	\checkmark	45V	19W	2	13W
Klasse 4		\checkmark	\checkmark	45V	36W	4	25,5 W
Klasse 5			\checkmark	51V	51W	4	40W
Klasse 6			\checkmark	51V	68W	4	51W
Klasse 7				53V	83W	4	62W
Klasse 8			\checkmark	53V	95W	4	71,3W

*1: Die minimale Gleichspannung zur Unterstützung des angegebenen PSE-Ausgangs

*2: Die maximale Ausgangsleistung auf der PSE-Seite für die angeforderte PD-Klasse

	*3: Die minimale Leistung, die am PD-Ende empfangen wird, mit maximaler Leistung am PSE-Ende im
	ungünstigsten Fall
Stromversorgung	95W max. (pro Port) am Port-Ausgang für Cat.5-Entfernung bis zu 100 Meter
PSE-Stromanschlüsse	Pin 1/2/4/5: Vpoe+, Pin 3/6/7/8: Vpoe- (Vpoe kommt vom Gleichstromeingang)
	Leistungsabgabe: max. 95 W. am Port-Ausgang (Abhängig von der DC-
	Versorgungsspannung)
Schutz	Abschaltung des PoE-Ausgangs
Schutzveranstaltungen	Inkompatible PD-Erkennung, PD-Trennung
	Überlast, Überstrom, Kurzschluss, Unterspannung
Leistungskapazität	240 W werden von allen PSE-Ports geteilt

Klemmenblock-Anschluss

Gleichstromeingang	Geschraubter Euro-Klemmenblock: DC+/- Kontakte
Betriebseingangsspannung	ten $+12 \sim +60$ VDC für allgemeine Anwendungen
	$+45 \sim +57$ VDC für PoE-Anwendungen
Energieverbrauch	10,3 W max. (Volllast ohne PSE-Ausgabe)
	7

250,3 W max. (mit vollem PoE-Ausgang)
3 Anschlusskontakte (30 VDC/1 A max. oder 120 VAC/0,5 A max.)
Öffnerkontakte: normal – gestützt, Alarm – offen
Schließerkontakte: normal – offen, Alarm – gestützt
PStromausfall, spezifischer Port-Link-Fehler (Software konfiguriert), OPA

Abmessungen	140 x 106 x 60 mm (HxTxB)
Gehäuse	Geschlossenes Metall ohne Lüfter
Montage	DIN-Schienenmontage, Schalttafelmontage (optional)

Betriebstemperatur	Typisch $-30^{\circ}C \sim +70^{\circ}C$
Lagertemperatur	$-40^{\circ}C \sim +85^{\circ}C$
Relative Luftfeuchtigkeit	$5\% \sim 95$ % nicht kondensierend

2. Installation

Das Produktpaket enthält:

- Die Schalteinheit
- QR-Code-Etikett
- Ein Konsolenkabel

2.2 Sicherheitshinweise

Um das Risiko von Körperverletzungen, Stromschlägen, Bränden und Schäden am Produkt zu verringern, beachten Sie die folgenden Vorsichtsmaßnahmen:

Warten Sie kein Produkt außer wie in Ihrer Systemdokumentation beschrieben.				
Durch das Öffnen oder Entfernen von Abdeckungen besteht die Gefahr eines Stromschlags.				
Nur ein geschulter Servicetechniker sollte Komponenten in diesen Fächern warten.				
Wenn eine der folgenden Bedingungen auftritt, trennen Sie das Produkt von der Steckdose und tauschen Sie das Teil aus oder wenden Sie sich an Ihren geschulten Serviceanbieter:				
- Das Netzkabel, Verlängerungskabel oder der Stecker ist beschädigt.				
- Ein Gegenstand ist in das Produkt gefallen.				
- Das Produkt wurde Wasser ausgesetzt.				
- Das Produkt wurde fallen gelassen oder beschädigt.				
- Das Produkt funktioniert nicht ordnungsgemäß, wenn Sie die Bedienungsanleitung befolgen.				
Stecken Sie keine Gegenstände in die Öffnungen Ihres Systems. Andernfalls kann es zu Bränden oder Stromschlägen kommen, da Komponenten im Inneren kurzgeschlossen werden.				
Betreiben Sie das Produkt nur mit der Art externer Stromquelle, die auf dem Typenschild mit den				
elektrischen Nennwerten angegeben ist. Wenn Sie sich nicht sicher sind, welche Art von Stromquelle				
Sie benötigen, wenden Sie sich an Ihren Dienstanbieter oder das örtliche				
Da die Oberflächentemperatur des Geräts höher als 70 °C sein kann °C Im Bereich				
der Nennbetriebstemperatur darf das Produkt nur von autorisiertem Personal				
installiert und betrieben werden. Installieren Sie das Produkt an einem geschützten				
Ort, den Unbefugte nicht erreichen können.				

2.3 DIN-Schienenmontage

Im Produktpaket ist eine DIN-Schienenhalterung für die Montage des Switches in einem industriellen DIN-Schienengehäuse enthalten.

Die Schritte zur Montage des Switches auf einer DIN-Schiene sind:

1. Montieren Sie die Montagehalterung wie unten gezeigt an der Schaltereinheit:

- 2. Befestigen Sie die Halterung an der Unterkante der DIN-Schiene und schieben Sie das Gerät ein wenig nach oben, bis die Halterung an der Oberkante der DIN-Schiene festklemmen kann.
- 3. Befestigen Sie das Gerät an der DIN-Schiene und stellen Sie sicher, dass es sicher montiert ist.

2.4 Schalttafelmontage

Die Switche werden mit einer optionalen Schalttafelmontagehalterung geliefert. Die Halterung unterstützt die sichere Montage des Switches auf einer ebenen Fläche.

Die Montageschritte sind:

1. Montieren Sie die Montagehalterung an der Schaltereinheit.

- 2. Schrauben Sie die Halterung an die Schaltereinheit.
- 3. Schrauben Sie die Schalteinheit auf eine Platte. Unten sind drei Schraubenpositionen dargestellt:

2.5 Anlegen von Strom

DC IN terminal block connector

Stromanschlüsse des Klemmenblocksteckers

Din	1	+	Vdc positiv (+) Eingangsanschluss	
PIII	2	-	Vdc negativ (—) Eingangsanschluss	

Vdc-Eingangsspezifikationen

Arbeitsspannungsbereich	Anwendungen	Leistungsabgabe am PSE-Port	
+12V ~ +60VDC	Allgemein	-	
+45V ~ +57VDC	PoE, PoE+	+51V, 36W max.	
+53V ~ +57VDC	PoE++	+53V, 95W max.	

Zusammen mit dem Switch wird ein 2P-Klemmenstecker mitgeliefert, wie unten gezeigt:

Stromkabel : $24 \sim 12$ AWG (IEC 0,5 ~ 2,5 mm).²), 1 Meter max.

2.6 Alarmrelaisausgang

Der Alarmrelaisausgang dient zur Meldung von Fehlerereignissen an ein Fernalarmrelais-Überwachungssystem. Der Wiedergabeausgang verfügt über drei Kontakte (unterstützt zwei Logiktypen) im Klemmenblockanschluss neben den Vdc-Schnittstellen.

DC IN terminal block connector

Alarmrelais-Ausgangspins und Logik:

Din	3	4	Alarmrelaisausgang, NO-Kontakte (Normal offen).
FIII	NEIN		Offen: Normal, Kurzgeschlossen: Alarm
Pin	4	5	Alarmrelaisausgang, NC-Kontakte (Normal geschlossen).
	NC		Kurzgeschlossen: Normal, Offen: Alarm

Je nach Logikanforderung für das Relaisüberwachungssystem kann jedes Paar verwendet werden. Verwenden Sie für die Signalverkabelung den mitgelieferten 3P-Klemmenstecker und stecken Sie ihn in die Kontakte.

Alarmereignisse

- Ausfall der Eingangsstromversorgung
- Bestimmter Port-Link ausgefallen (Die spezifischen Ports können per Software konfiguriert werden.)
- OPA-Alarm, wenn die optische Leistung über einem oberen Grenzwert oder unter einem unteren Grenzwert liegt

Hinweis: Stellen Sie sicher, dass die an den Kontakten angelegte Spannung innerhalb der Spezifikation von maximal 30 VDC/1 A liegt. oder 120VAC/0,5A max.

2.7 Reset-Taste

Mit der Reset-Taste wird ein Reset des Switches durchgeführt. Es wird im Normalfall nicht verwendet und kann zu diagnostischen Zwecken verwendet werden. Wenn Sie ein Problem mit dem Netzwerkabsturz vermuten, ist es hilfreich, die Taste zu drücken, um den Schalter zurückzusetzen, ohne den Strom auszuschalten. Überprüfen Sie, ob das Netzwerk wiederhergestellt ist.

Die Schaltfläche kann auch verwendet werden, um die Softwarekonfigurationseinstellungen auf die Werkseinstellungen zurückzusetzen.

D' 0	• • •
Die Operat	ionen sind:
r	

Betrieb	Funktion	
Drücken Sie die Taste und lassen Sie sie während der	Setzen Sie den Switch zurück und starten Sie ihn.	
Schalterbetätigung los	Das Hochfahren dauert ca. 20 Sekunden und endet damit,	
	dass alle LEDs gelb und grün leuchten und dann alle LEDs	
	einmal aus sind.	
Drücken Sie die Taste, bis alle LEDs gelb und grün	Starten Sie alle Werkseinstellungen und stellen Sie sie	
leuchten, dann alle LEDs aus.	wieder her	

2.8 Herstellen von UTP-Verbindungen

Die 10/100/1000 RJ-45-Kupferports unterstützen die folgenden Verbindungstypen und Entfernungen:

Netzwerkkabel	
10BASE-T:	2-paariges UTP Cat. 3, 4, 5, EIA/TIA-568B 100 Ohm
100BASE-TX:	2-paariges UTP Cat. 5, EIA/TIA-568B 100 Ohm
1000BASE-T:	4-paariges UTP Cat. 5 oder höher (Cat.5e wird empfohlen), EIA/TIA-568B 100 Ohm
Verbindungsabstand:	Bis zu 100 Meter für alle oben genannten

Auto-MDI/MDI-X-Funktion

Mit dieser Funktion kann der Port die Twisted-Pair-Signale automatisch erkennen und sich selbst anpassen, um automatisch eine gültige MDI-zu-MDI-X-Verbindung mit dem entfernt angeschlossenen Gerät herzustellen. Unabhängig davon, ob ein Straight-Through-Kabel oder ein Crossover-Kabel angeschlossen ist, können die Ports das Empfangspaar automatisch erkennen und sich so konfigurieren, dass es den Regeln für MDI-zu-MDI-X-Verbindungen entspricht. Es vereinfacht die Kabelinstallation.

Auto-Negotiation-Funktion

Die Ports verfügen über eine Auto-Negotiation-Funktion und sind vollständig in der Lage, die Verbindung zu beliebigen Ethernet-Geräten zu unterstützen. Der Port führt bei jedem Verbindungsaufbau automatisch einen Aushandlungsprozess für die Geschwindigkeit und Duplexkonfiguration mit dem angeschlossenen Gerät durch. Wenn das verbundene Gerät auch Auto-Negotiation-fähig ist, erhalten beide Geräte nach dem Aushandlungsprozess die beste Konfiguration. Wenn das angeschlossene Gerät keine automatische Aushandlung durchführen kann, erkennt der Switch die Geschwindigkeit und verwendet Halbduplex für die Verbindung.

Portkonfigurationsmanagement

Um eine ordnungsgemäße Verbindung zu einem Gerät herzustellen, das keine automatische Aushandlung unterstützt, wird empfohlen, die Portsteuerungsfunktion über die Softwareverwaltung zu verwenden, um den erzwungenen Modus festzulegen und Geschwindigkeit und Duplexmodus anzugeben, die der vom angeschlossenen Gerät verwendeten Konfiguration entsprechen.

2.9 Herstellen einer Glasfaserverbindung

Die Dual-Speed-SFP-Steckplätze Port 9 und Port 10 müssen mit einem SFP-Glasfaser-Transceiver installiert werden, um eine Glasfaserverbindung herzustellen. Der Switch wird möglicherweise mit einem oder zwei vorinstallierten SFP-Transceivern geliefert.

Arten der unterstützten SFP-Glasfaser-Transceiver:

1000-Mbit/s-basierte 1000BASE-X-SFP-Transceiver 100-Mbit/s-basierte 100BASE-FX-SFP-Transceiver

Installation des SFP-Glasfaser-Transceivers

- 1. Schalten Sie den Switch aus.
- 2. Setzen Sie den SFP-Glasfaser-Transceiver in den SFP-Steckplatz ein. Normalerweise wird für jeden SFP-Transceiver ein Bügel mitgeliefert. Halten Sie den Bügel fest und führen Sie den Einschub durch.
- 3. Bringen Sie den Bügel in die verriegelte Position, bis der SFP-Transceiver sicher im Steckplatz sitzt.

Anschließen von Glasfaserkabeln

Die meisten SFP-Transceiver sind üblicherweise mit LC-Anschlüssen ausgestattet. Identifizieren Sie den TX- und RX-Anschluss, bevor Sie die Kabelverbindung herstellen. Die folgende Abbildung zeigt ein Verbindungsbeispiel zwischen zwei Glasfaser-Ports:

Stellen Sie sicher, dass die Rx-zu-Tx-Verbindungsregel an beiden Enden des Glasfaserkabels befolgt wird.

Netzwerkkabel

Multimode (MMF) – 50/125 μ m, 62,5/125 μ M Einzelmodus (SMF) – 9/125 μ M

Konfiguration der Portgeschwindigkeit

Es gibt drei Möglichkeiten, die Portgeschwindigkeit per Software für SFP-Port 9 und Port 10 zu konfigurieren. Die Optionen sind:

Portmodus	Beschreibung					
Auto	Automatische Erkennung des Typs des installierten SFP-Transceivers durch Lesen von					
	DDM-Daten. 100 Mbit/s-Transceiver: Nicht automatische Aushandlung (erzwungen), 100					
	Mbit/s, Vollduplex. 1000 Mbit/s-Transceiver: Automatische Aushandlung, 1000 Mbit/s,					
	Vollduplex					
100 Mbit/s FDX	Mbit/s FDX Nicht automatische Aushandlung (erzwungen), 100 Mbit/s, Vollduplex					
1 Gbit/s FDX	Automatische Aushandlung, 1000 Mbit/s, Vollduplex					

2.10 Herstellen von PoE-PSE-Verbindungen

In diesem Abschnitt wird beschrieben, wie Sie eine Verbindung zwischen einem PSE-Port und einem PoE-Powered-D-Gerät (PD) herstellen. Alle Kupfer-Ports sind mit der PoE-PSE-Funktion ausgestattet. Die Ports sind in der Lage, über ein Cat.5-Kabel Strom zusammen mit einem Netzwerksignal an ein angeschlossenes, mit Strom versorgtes Gerät zu liefern. Um eine PoE-Verbindung herzustellen, muss das angeschlossene PoE-PD aus Sicherheitsgründen ein IEEE 802.3af, IEEE 802.3at oder IEEE 802.3bt-kompatibles Gerät sein. Inkompatible Geräte werden vom PoE-Switch-Modell nicht unterstützt. In der folgenden Tabelle sind die Leistungsstufen des IEEE 802.3-Standards aufgeführt:

Konform	IEEE-Standard.			PSE-Ausgabe	PD verfügbare
PD-Klassen	802.3af	802.3at	802.3bt	Leistung max.	Leistung min.
Klasse 1	\checkmark	\checkmark	\checkmark	4W	3,84 W
Klasse 2	\checkmark	\checkmark	\checkmark	7W	6,49 W
Klasse 3	\checkmark	\checkmark	\checkmark	15,4W	13W
Klasse 4		\checkmark	\checkmark	32W	25,5 W
Klasse 5			\checkmark	45W	40W
Klasse 6			\checkmark	60W	51W
Klasse 7			\checkmark	75W	62W
Klasse 8				90W	71,3W

IEEE 802.3-Standard: PoE-Klassifizierung für die kompatiblen PD-Typen und Leistungsstufen

RJ-45-Pinbelegung des PSE-Ports des Geräts

Pin PoE-Leistung		1000Base-T	10/100Base-TX
1	Vpoe+	BI_DB+	RX+
2	Vpoe+	BI_DB-	RX-
3	Vpoe-	BI_DA+	TX+
4	Vpoe+	BI_DD+	-
5	Vpoe+	BI_DD-	-
6	Vpoe-	BI_DA-	TX-
7	Vpoe-	BI_DC+	-
8	Vpoe-	BI_DC-	-

Vpoe: PoE-Stromspannung am TP-Port

Die PSE-Ports sind mit folgenden Fähigkeiten ausgestattet:

- 1. Erkennung eines IEEE 802.3af/802.3at/802.3bt-kompatiblen PD.
- 2. Ein Gerät, das als nicht IEEE 802.3-konformes PD eingestuft ist, wird nicht mit Strom versorgt.

- 3. Es erfolgt keine Stromversorgung, wenn am Port keine Verbindung besteht.
- 4. Bei einer Unterbrechung wird die Stromversorgung sofort unterbrochen.
- 5. Bei Überlastung wird die Stromversorgung sofort unterbrochen.
- 6. Bei Auftreten eines Überstroms wird die Stromversorgung sofort unterbrochen.
- 7. Bei Auftreten eines Kurzschlusses wird die Stromversorgung sofort unterbrochen.

Angefordert	DC-	PSE-	Kabelstrompaare	PD verfügbare
PD-Klassen	Leistung	Ausgangsleistung	*3	Leistung min. *4
	min. *1	max. *2		
Klasse 1	45 ~ 57V	5,3W	2	3,84 W
Klasse 2	45 ~ 57V	8,5 W	2	6,49 W
Klasse 3	45 ~ 57V	19W	2	13W
Klasse 4	45 ~ 57V	36W	4	25,5 W
Klasse 5	51 ~ 57V	51W	4	40W
Klasse 6	51 ~ 57V	68W	4	51W
Klasse 7	53 ~ 57V	83W	4	62W
Klasse 8	53 ~ 57V	95W	4	71,3W

Die Gerätespezifikationen: DC-Stromeingang vs. PoE-Stromausgang

*1: Die minimale Gleichstromspannung zur Unterstützung der angegebenen maximalen PSE-Leistung

*2: Die maximale Ausgangsleistung auf der PSE-Seite für die angeforderte PD-Klasse

*3: Kabelpaare, die PSE-Strom liefern

*4: Die minimale Leistung, die am PD-Ende empfangen wird, mit maximaler Leistung am PSE-Ende im ungünstigsten Fall

*5: Das maximale Gesamtleistungsbudget aller PSE-Ports des Geräts beträgt 240 W.

Anschlussbeispiel:

2.11 LED-Anzeige

LED	Funktion	Farbe	Zustand	Deutung
PWR	Leistung	Grün	AN	Die Stromversorgung erfolgt über
	Status			den Switch.
			AUS	Der Switch wird nicht mit Strom
				versorgt.
Mgt	Verwaltungsstatus	Grün	AUS	Der Switch befindet sich in der
				Initialisierung und Diagnose.
		Gelb	BLINKEN	Initialisierung mit Diagnosefehler
				abgeschlossen
				oder ein Systemfehler wurde
				während des normalen Betriebs
				festgestellt
		Grün	AN	Die Initialisierung wurde ohne Fehler
				abgeschlossen
Port1 ~ Port 8		0."		
SPEED_LED	Status der Portgeschwindigkeit	Grun	AN	Die Geschwindigkeit betragt 1000
		Calle		MDIT/S.
		Geib	AN	Die Geschwindigkeit betragt 10
				DeE Stremvereergung
			DLIINKEIN	
	Port_Link_Status	Grün	ΔΝ	Die Portverbindung ist bergestellt
		Orun		(Kein Verkehr)
		Grün		Die Portverbindung ist aktiv und es
		Orun	DEINNEN	aibt Verkehr
			AUS	Die Portverbindung ist ausgefallen.
Port 9, Port 10				
Geschwindigkeit	Portgeschwindigkeit/Verbindungsstatus	Grün	AN	Eine 1000-Mbps-Verbindung wird
_LED				hergestellt.
		Gelb	AN	Eine 100-Mbps-Verbindung wird
				hergestellt.
			BLINKEN	Aktivitätsstatus
			AUS	Die Portverbindung ist ausgefallen.

2.12 Konsolenverbindung herstellen

Der für den Konsolenport vorgesehene Anschluss ist RJ-45.

Pin-Belegungen

Pin	RS-232-Signale	EIN/AUS
1, 2, 7, 8	NC	
3	RxD	IN
6	TxD	AUS
4, 5	GND	

Informationen zur Baudrate

Baudrate - 115200 Datenbits - 8 Parität – Keine Stoppbit - 1 Flusskontrolle – Keine

3. Den Switch verwalten

Der Switch bietet die folgenden Methoden zum Konfigurieren und Überwachen des Switches:

- Out-of-Band-Telnet-CLI-Verwaltung über den Konsolenport
- In-Band-Verwaltung per Telnet-CLI über TCP/IP-Netzwerk durchführen
- Durchführung einer In-Band-Verwaltung über eine Webschnittstelle über ein TCP/IP-Netzwerk
- Ermöglicht eine In-Band-SNMP-Verwaltung über ein TCP/IP-Netzwerk

3.1 IP-Adresse und Passwort

Die IP-Adresse ist eine Identifikation des Switches in einem TCP/IP-Netzwerk. Jedem Switch sollte eine neue und eindeutige IP-Adresse im Netzwerk zugewiesen werden. Der Switch wird mit den folgenden werkseitigen Standardeinstellungen für die Softwareverwaltung geliefert:

Standard-IP-Adresse des Switches: 192.168.0.2 / 255.255.255.0

Der Switch verwendet die lokale Authentifizierung anstelle der RADIUS-Authentifizierung mit Werkseinstellungen. Fester Benutzername: admin Standard-Passwort:

Bei der Werkseinstellung ist kein Passwort erforderlich. Das Passwort wird jedoch zur lokalen Authentifizierung beim Zugriff auf den Switch über Konsole, Telnet und die webbasierte HTTP-Schnittstelle verwendet. Aus Sicherheitsgründen wird empfohlen, die Standardeinstellungen für den Switch zu ändern, bevor Sie ihn in Ihrem Netzwerk bereitstellen.

3.2 Konfigurieren von IP-Adresse und Passwort über Konsole und Telnet

[IP Adresse]Der Einstellungsbefehl befindet sich in der IP-Befehlsgruppe.

```
>IP-Setup [<ip_addr>] [<ip_mask>] [<ip_router>] [<vid>]
```

Parameter:<ip_addr>: IP-Adresse (abcd)<ip_mask>: IPv4-Subnetzmaske (abcd)<ip_router>: IPv4-Router (abcd)<vid>: VLAN-ID (1-4095)

[IPv6-Adresse]Der Einstellungsbefehl befindet sich ebenfalls in der IP-Befehlsgruppe.

```
>IP IPv6-Setup [<ipv6_addr>] [<ipv6_prefix>] [<ipv6_router>]
Parameter:
<ipv6_addr> : Die IPv6-Adresse wird in 128-Bit-Datensätzen als acht Felder mit bis zu vier
Hexadezimalziffern dargestellt, wobei jedes Feld durch einen Doppelpunkt getrennt ist (:).
<ipv6_präfix> : IPv6-Subnetzmaske
<ipv6 router> : IPv6-Router
```

[Passwort]Der Einstellungsbefehl befindet sich auch in der Befehlsgruppe "Sicherheit/Schalter/Benutzer".

Benutzerkonfiguration für Sicherheitsschalter Benutzer des Sicherheitsschalters fügen <Benutzername> <Passwort> <Berechtigungsstufe> hinzu Benutzer des Sicherheitsschalters <Benutzername> löschen

Siehe "Bedienungsanleitung für Telnet- und Konsolenverwaltung".

3.3 Konfigurieren der IP-Adresse über die Webschnittstelle

Starten Sie den Webbrowser

Starten Sie Ihre Browsersoftware und geben Sie die Standard-IP-Adresse der Switch-Einheit ein, mit der Sie eine Verbindung herstellen möchten. Die IP-Adresse wird als URL für die Browsersoftware verwendet, um das Gerät zu durchsuchen.

URL:http://192.168.0.2/

Melden Sie sich an, um die Einheit zu wechseln

Wenn die Browser-Software erfolgreich eine Verbindung zur Switch-Einheit herstellt, wird ein Anmeldebildschirm angezeigt, über den Sie sich beim Gerät anmelden können (siehe linke Anzeige unten):

<u> </u>	Please tupe u	your user name and password
~	Site:	192.168.0.2
	Realm	webstax_domain
	User Name	
	Password	
	🔲 Save this	password in your password list
		OK Cancel

Geben Sie auf der Anmeldeseite die folgenden Standardwerte ein: Standardbenutzername:*Administrator* Standard-Passwort:↓

Es ist kein Passwort erforderlich.

Klicken Sie auf OK, um sich beim Switch anzumelden.

Webseite nach erfolgreicher Anmeldung

Wählen Sie [Konfiguration] -> [System] -> [IP], um die IP-Adresse zu konfigurieren

IP Configuration

	Configured	Current
DHCP Client		Renew
IP Address	192.168.0.179	192.168.0.179
IP Mask	255.255.255.0	255.255.255.0
IP Router	0.0.0.0	0.0.0.0
VLAN ID	1	1
DNS Server	0.0.0.0	0.0.0.0

IP DNS Proxy Configuration

DNS Proxy	
-----------	--

Save Reset

Aufbau	Beschreibung
DHCP-Client	Aktivieren Sie dieDHCPKunden, indem Sie dieses Kontrollkästchen aktivieren.
IP Adresse	Das bereitstellenIPAdresse dieser Schalteinheit.
IP-Maske	Das bereitstellenIPMaske dieser Schalteinheit.
IP-Router	Das bereitstellenIPAdresse des Standardrouters für diese Switch-Einheit.
VLAN-ID	Stellen Sie das verwaltete bereitVLAN-ID. Der zulässige Bereich liegt zwischen 1
	und 4095.
DNS Server	Geben Sie die IP-Adresse des DNS-Servers anPunkt-Dezimal-Schreibweise.
DNS-Proxy	Wenn der DNS-Proxy aktiviert ist, leitet das DUT DNS-Anfragen an den aktuell
	konfigurierten weiterDNSServer auf dem DUT und antwortet als DNS-Resolver an
	das Client-Gerät im Netzwerk.
Speichern	CKlicken Sie, um die Änderungen zu speichern.
Zurücksetzen	Klicken Sie hier, um alle lokal vorgenommenen Änderungen rückgängig zu machen
	und zu den zuvor gespeicherten Werten zurückzukehren.
Erneuern	Klicke umerneuernDHCP. Diese Schaltfläche ist nur verfügbar, wennDHCPaktiviert.

3.4 Referenzhandbücher für Web-, Konsolen- und Telnet-Verwaltung

Die folgenden Bedienungsanleitungen werden auch separat für die Konsolen-, Telnet- und Webverwaltung bereitgestellt:

Bedienungsanleitung – Telnet- und Konsolenverwaltung xxxxx.doc Bedienungsanleitung - Webmanagement xxxx.doc Die Handbücher beschreiben die detaillierten Befehle und Informationen.

3.5 Konfiguration für SNMP-Management

Der Switch unterstützt die Verwaltung von SNMP v1, SNMP v2c und SNMP v3. Stellen Sie sicher, dass die entsprechenden Einstellungen für den Switch ordnungsgemäß konfiguriert sind, bevor Sie die SNMP-Verwaltung über einen SNMP-Manager starten.

Verwendung der Telnet-Schnittstelle

Die folgenden Befehle sind in der Telnet-SNMP-Befehlsgruppe zum Konfigurieren von SNMP-bezogenen Einstellungen verfügbar:

>SNMP-Konfiguration *>SNMP-Modus* [aktivieren] deaktivieren] >SNMP-Version [1|2c|3] >SNMP-Lese-Community [<Community>] >SNMP Write Community [<community>] >SNMP-Trap-Modus [aktivieren] deaktivieren] >SNMP-Trap-Version [1|2c|3] >SNMP-Trap-Community [<Community>] >SNMP-Trap-Ziel [<ip_addr_string>] >SNMP-Trap-IPv6-Ziel [<ipv6 addr>] >SNMP-Trap-Authentifizierungsfehler [aktivieren|deaktivieren] >SNMP-Trap-Verbindung [aktivieren] deaktivieren] >SNMP-Trap-Informationsmodus [aktivieren] deaktivieren] >SNMP-Trap-Informations-Timeout [<timeout>] >Wiederholungszeiten für SNMP-Trap-Informationen [<Wiederholungen>] >SNMP Trap Probe Security Engine-ID [aktivieren|deaktivieren] >SNMP-Trap-Sicherheits-Engine-ID [<engineid>] >SNMP-Trap-Sicherheitsname [<Sicherheitsname>] >SNMP-Engine-ID [<engineid>] >SNMP-Community Hinzufügen <community> [<ip addr>] [<ip mask>] >SNMP-Community <Index> löschen >SNMP-Community-Suche [<index>] >SNMP-Benutzer hinzufügen <Engineid> <Benutzername> [MD5|SHA] [<auth_password>] [DES] [<priv_password>] >SNMP-Benutzer <Index> löschen >SNMP-Benutzer-Änderungsschlüssel <engineid> <user name> <auth password> [<priv password>] >SNMP-Benutzersuche [<index>] >SNMP-Gruppe <Sicherheitsmodell> <Sicherheitsname> <Gruppenname> hinzufügen >SNMP-Gruppe <Index> löschen

- >SNMP-Gruppensuche [<index>]
- >SNMP-Ansicht Hinzufügen <view_name> [included|excluded] <oid_subtree>
- >SNMP-Ansicht <Index> löschen
- >SNMP-Ansichtssuche [<index>]
- >SNMP-Zugriff Hinzufügen <Gruppenname> <Sicherheitsmodell> <Sicherheitsstufe> [<Name_der_Leseansicht>]
- [<Name_der_Schreibansicht>]
- >SNMP-Zugriff <Index> löschen
- >SNMP-Zugriffssuche [<index>]

Verwenden der Webschnittstelle

Wählen Sie [Konfiguration] -> [Sicherheit] -> [SNMP]:

Die Befehle unterstützen die Konfiguration für:

- Grundlegende Systemkonfiguration für SNMP v1 und SNMP v2c
- Grundlegende Systemkonfiguration für SNMP v1-Trap, SNMP v2c-Trap und SNMP v3-Trap
- Communities, die den Zugriff auf den SNMPv3-Agenten ermöglichen
- USM-Benutzertabelle (User-based Security Model) für SNMPv3
- VACM (View-based Access Control Model) Viewer-Tabelle für SNMPv3
- Gruppentabelle für SNMPv3
- Greift auf die Gruppentabelle für SNMPv3 zu

3.6 SNMP-MIBs

Der Switch stellt die folgenden SNMP-MIBs bereit:

- RFC 1213 MIB II
- RFC 2674 QBridge MIB (VLAN MIB)
- RFC 2819 RMON (Gruppe 1, 2, 3 und 9)
- RFC 2863 Interface Group (IF) MIB
- RFC 3411 SNMP-Management-Frameworks
- RFC 3414 Benutzerbasiertes Sicherheitsmodell (USM)
- RFC 3415 View Based Access Control Model (VACM)
- RFC 3621 Power Ethernet MIB

- RFC 3635 EtherLike MIB
- RFC 3636 802.3 Medium Attachment Units (MAUs) MIB
- RFC 4133 Entitäts-MIB
- RFC 4188 Bridge-MIB
- RFC 4668 RADIUS-Authentifizierungs-Client-MIB
- RFC 5519 Multicast Group Membership Discovery (MGMD) MIB
- IEEE 802.1 MSTP MIB
- IEEE 802.1AB LLDP MIB
- IEEE 802.1X Port Access Entity (PAE) MIB
- TIA 1057 LLDP Media Endpoint Discovery (MED) MIB
- IEEE 802.1-Q-BRIDGE MIB
- Private SFPDDM MIB (DDM-Status der SFP-Ports lesen)
- Private Neustart-MIB (Remote-Start über SNMP)
- Privates TFTP-Firmware-Update MIB (TFTP-Firmware-Update über SNMP)
- Private OPA-Funktion MIB (OPA-Konfiguration für die SFP-Ports)
- Private ALS-Funktion MIB (ALS-Konfiguration für die SFP-Ports)

Eine Produkt-MIB-Datei ist auch auf der Produkt-CD für die SNMP-Manager-Software verfügbar.

3.6.1 SNMP-Traps

Zusätzlich zu den SNMP-Standardfallen ist das Gerät mit privaten OPA-Alarmfallen ausgestattet.

Die Fallen sind:

- Alarmfalle Port-TX-Leistung niedriger als der Minimalwert
- Alarmfalle Port-TX-Leistung höher als der Maximalwert
- Normalfall Port-TX-Stromversorgung wieder normal (höher als der Minimalwert)
- Normalfall Port-TX-Leistung wieder normal (niedriger als der Maximalwert)

4. Redundante Ringanwendungen

4.1 Auto-Multi-Ring-Technologie

Die Auto-Multi-Ring-Technologie wurde speziell für Switches entwickelt, die in einer Ringtopologie verbunden sind und redundante Unterstützung benötigen, wenn im Ring ein Fehler auftritt. Bei großen Netzwerken sind mehr als eine Ringverbindung sehr häufig. Die Implementierung der Auto-Multi-Ring-Technologie kann mehr als eine Ringverbindung innerhalb eines Switches unterstützen. Es ist auch in der Lage, gleichzeitig mit RSTP-Unterstützung im Switch zu arbeiten.

Einige grundlegende Informationen sind:

- Unterstützt bis zu fünf Rufsignale in einem Switch
- Unterstützt bis zu 30 Mitglieds-Switches in einem Ring
- Bietet eine schnellere Reaktionszeit als das RSTP-Protokoll
- Funktioniert gleichzeitig mit dem RSTP-Protokoll innerhalb eines Switches

Die folgende Abbildung zeigt eine Konfiguration mit drei redundanten Ringen und einem RSTP-Ringredundanter Hauptring. Einige Switches unterstützen zwei redundante Ringe gleichzeitig.

Die folgende Abbildung zeigt, wie ein Switch für die gleichzeitige Unterstützung von drei redundanten Ringen und einem RSTP-Ring konfiguriert ist.

4.2 Redundante Ringanwendungen mit RSTP-Protokoll nach Industriestandard

Es kann auch eine Ringverbindung mithilfe der Industriestandard-RSTP-Funktion unterstützt und ein Backup-Pfad eingerichtet werden. Sollte es zu einem Verbindungsfehler kommen, kann der Backup-Pfad sofort eine Verbindung herstellen, um den Netzwerkbetrieb wiederherzustellen.